

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Intro

This document is a collaborative document that aims to include the thoughts of modern appsec leaders
and leading organisation to show the state of application security.

The document is targeted to both executives and practitioners. Like the ​Verizon data breach report​, this
report will have an executive summary and a more detailed section.

This document is an open contribution from outstanding expert around the industry if you would like to
contribute more reach out to info at ​https://www.nsc42.co.uk​ ro ​appsec@nsc42.co.uk

Why Read this report
This report is community-driven with a data-driven approach to application security. The report will refer
to other reports currently on the subject (e.g. Forrester, Sonatype, Snyk, WhiteSource and other reports)
as well as broader subject (Verizon data breach report)

Thank You notes
A massive thank you to all the authors, contributors, editors, and reviewers of the document. This
document truly embodies the power of the information security community full of exceptional selfless
and inspirational professionals.

Document Licence- Creative Common

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. Kindly refer to
this work if you want to add a reference.
All images under copyright shall not be reproduced. Any image with attribution shall be shared in the
same way.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/legalcode or send a
letter to Creative Commons, 171 Second Street,
Suite 300, San Francisco, California, 94105, USA

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://enterprise.verizon.com/resources/reports/dbir/
https://www.nsc42.co.uk/
mailto:appsec@nsc42.co.uk

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Executive Summary
Application security is a growing concern for Board and organisations. We’ve seen a rise in focus on
application security as more and more elements in the organisation are becoming code-driven.

According to a recent survey carried out on C-suite users, a total of 53% of respondents indicated
“cybercrime and data breaches” as the number one concern when it comes to cybersecurity. [​IBM Study​]

So why criminals (not a hacker) attack an organisation? Well mostly for financial reason, even though
there are exceptions, (see later in the report).

 ​Verizon’s Data Breach Investigations Report (DBIR)​ finds that 86% of data breaches are financially
motivated—up 15% over the previous year. In contrast, espionage—the second-highest motive—declined
from 2018 to 2020.

So how much of the vulnerabilities being exploited are due to web applications, code or similar are being
exploited?
This report focuses on an industry view of application security. The report takes from various sources
(cited) and aims to be a point of contact for application security. Application security, code security
seems to have particular attention in the latest few years.

The Verizon report also reveals that web applications show up as a vector to which cybercriminals have
increasingly turned their attention over the past year: 43% of all data breaches analysed by Verizon this
past year were the result of a​ ​web application vulnerability​.

With all the things becoming code (see infrastructure as code, containtainers being part of the build,
serverless) the focus is of the security team is right…but how we can extend this knowledge to the
engineering teams? Why the lack of code security? Is it because of experience?

This is a worrying statistic, as over 54% of the world’s organisations have experienced some sort of
significant cyber-attack in the past year. [​IBM​]
In 2018-2019, almost 53% of organisations reported a problematic shortage of cybersecurity skills.
[​Security Intelligence​]

With the complexity of code coming from different sources (stack traces), different teams developing
different part of the application is always difficult for a security team to scale. The report focus on data
breaches statistics and how they are linked to application security and further dive into the potential
methodologies (the HOW) and solution (the WHAT).
The first part of the report aims to address the high-level statistics that could be used to justify an
application security programme or the introduction of tools to perform application security in a
development pipeline. The time for the developer to fix code is key as the later a vulnerability is fixed the
more it will cost.

In 2019, 64% of companies that allocate more than 10% of their budget towards cybersecurity
experienced at least one breach. 34% of the companies indicated that they experienced a data breach last
year. [​Helpnet Security​]

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.ibm.com/thought-leadership/institute-business-value/c-suite-study
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
https://www.contrastsecurity.com/knowledge-hub/glossary/application-vulnerability?hsLang=en
https://www.contrastsecurity.com/knowledge-hub/glossary/application-vulnerability?hsLang=en
https://www.ibm.com/security/data-breach
https://securityintelligence.com/think-inside-the-box-to-bridge-the-cybersecurity-skills-gap/
https://www.helpnetsecurity.com/2019/11/06/cybersecurity-budgets-2020/

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

This report aims to enable the C-suite team to allocate focus and found appropriately and with the
hope that data breach will be less and less of a problem and development teams will be given the
time, tool and knowledge to fix vulnerabilities before they enter and threat the organization clients.

Data Breaches over time

Author - Francesco Cipollone

Data breaches are the modern cybersecurity problem of those days. We have malicious actors of all sorts
attacking organizations for different reasons, but mostly those can be categorized in

● Hacktivism – damaging an organization for a cause
● Direct financial gain – damaging an organization to steal easily usable information (e.g. credit

card)
● Indirect financial gain – stealing information to then resell them on the dark web for a price or

attack other organizations or subsidiaries.

Naturally, there are more nuanced than this but we could write otherwise a book talking about nuances.
The picture below displays just a quick timeline of data breaches over time. Nonetheless, the data
breaches are not limited only to those

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

According to the Forrester report, 40% of successful data breaches are due to Application security
vulnerabilities of some sort. While some other reports highlight the prevalence of Phishing and social
engineering the application security element of data breaches is undeniable

Without fully diving in the latest ​Verizon data breach report​,​ report some of the highlights:

● 56% of breaches took months or longer to discover​”
● “Errors were causal events in 21% of breaches”
● “breaches with ​compromised payment cards​ are becoming increasingly about ​web servers​”

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://enterprise.verizon.com/resources/reports/dbir/

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

● “The web application compromises are no longer attacks against data at rest. ​Code is being
injected to capture customer data as they enter it into web forms​.”

Data breaches have a huge impact on an organization. The picture below from Information is beautiful
provides a good indication of how widespread those data breaches are

Source: ​https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
See the data:
https://docs.google.com/spreadsheets/d/1i0oIJJMRG-7t1GT-mr4smaTTU7988yXVz8nPlwaJ8Xk/edit#gi
d=2

The monetary impact of data breaches is high, without taking into consideration regulators or GDPR fines
the average data breach costs roughly 3 ml dollars. Financial impacts are not limited to corporations.
Figures from the European Union Agency for Network and Information Security (2016) showed Germany
suffered losses estimated at 1.6% of Gross Domestic Product (GDP). The Netherlands suffered an
estimated 1.5% loss of GDP. Insecure code has morphed from a localized business problem to a threat to
national financial stability.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://docs.google.com/spreadsheets/d/1i0oIJJMRG-7t1GT-mr4smaTTU7988yXVz8nPlwaJ8Xk/edit#gid=2
https://docs.google.com/spreadsheets/d/1i0oIJJMRG-7t1GT-mr4smaTTU7988yXVz8nPlwaJ8Xk/edit#gid=2

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Source: ​NSC42 & Security Phoenix statistics

The reason why cybersecurity struggles as a field are that the application vulnerabilities get released.
Naturally, those costs vary depending on the elements considered in a data breach. But overall the picture
above displays a significant impact of a data breach and the relative speed at which the vulnerabilities
(Appsec and not) get released and exploited (3-15 days as average).
Considering some historic data breaches you can see that the 3m average number can be easily surpassed,
nonetheless consider that number to be a pure indicative reference as many statistics diverge from that
number.

● Experts agree that by the year 2020, the average cost of a data security breach for a major business
would be over $150 million. This estimate is due to the higher level of digitalization and
connectivity that the world has experienced over the last few years. [​BigCommerce​]

● The average total cost per data breach worldwide in 2019 amounted to a total of $3.92 million and
$3.5 million in 2014. [​IMB​]

● The average price for a Business Email Compromise hack is $24,439 per case, according to a
2019 report by Verizon. [​Verizon​]

Source: ​NSC42 & Security Phoenix statistics

In the UK the data breaches numbers are lower but not insignificant by any means...
Large business and small businesses are the one more affected according to ​Cyber Security Breaches
Survey 2019, page 45

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.nsc42.co.uk/applicationsecurtiy
https://www.bigcommerce.com/blog/data-breaches/#the-costs-of-a-data-breach
https://www.ibm.com/security/data-breach
https://enterprise.verizon.com/en-gb/resources/reports/dbir/
https://www.nsc42.co.uk/applicationsecurtiy
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/813599/Cyber_Security_Breaches_Survey_2019_-_Main_Report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/813599/Cyber_Security_Breaches_Survey_2019_-_Main_Report.pdf

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Source: ​Cyber Security Breaches Survey 2019, page 51

The average cost for the UK for data breaches might be lower than the overall average nonetheless it’s
still quite an impacting number.
The cost does not consider potential GDPR fines (2-4%) overall revenue as well as brand image and
customer impact

Some of the Recent Data Breaches
Top breaches by misconfiguration

Source: ​NSC42 & Security Phoenix statistics

eBay
E-Bay in 2014:​The data breach was carried out using stolen login credentials from a small number of
employees. A total of 145 million eBay accounts were compromised. [​Business Insider​]

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/813599/Cyber_Security_Breaches_Survey_2019_-_Main_Report.pdf
https://www.nsc42.co.uk/applicationsecurtiy
https://www.businessinsider.com/cyber-thieves-took-data-on-145-million-ebay-customers-by-hacking-3-corporate-employees-2014-5

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Marriot
Marriott International in 2014/2018​: The breach occurred due to unauthorized access to the guest’s
information database. As a result, over 500 million user accounts were compromised. [​Forbes​]

Capital One - Misconfiguration
106 million records exposed due to misconfiguration
Capital One is the 10​th​ largest bank in America on the basis of assets. It uses the revered Amazon Web

Services (AWS) as its cloud solution. Here is the chain of fateful events leading to the breach.

Access token was then used to fetch data from AWS storage.
700 folders and data packets containing customer info were copied to an external location.

British Airways (2018)
RiskIQ supported the Magecart claim by showing that the British Airways website had a third-party (but

self-hosted) script which appeared to have been modified to include code to exfiltrate payment data

from the payment page.

Facebook via 3rd party app
Third-Party Facebook App Data Exposure – 540 Million Records
Facebook in 2018​: This data breach was caused after hackers exploited a vulnerability in Facebook’s
“View As” code. They were left with 50 Million compromised accounts. [​The Guardian​]

Special Mentions:

Equifax (Special mention) – Breach of the database via Apache Struts
months old vuln
Equifax in 2017: The data breach occurred as a result of a vulnerability in the open-source software used
to access its servers. As a result, the personal information of 143 million consumers was exposed.
[​Forbes​]
hackers used an Apache Struts vulnerability,​ ​a months-old issue that Equifax knew about but failed to
fix​, and gained access to login credentials for three servers. They found that those credentials allowed
them to access another 48 servers containing personal information.
Slow exfiltration of records (76 days)

Nintendo
Nintendo – Credential Stuffing - April 27, 2020:
A credential stuffing attack using previously exposed user IDs and passwords of popular video game
company,​ ​Nintendo​, granted hackers access to over 160,000 player accounts. With unauthorized access
to the accounts, the fraudsters may have purchased digital items using stored cards as well as view
personal information including name, date of birth, gender, country/region and email address.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.forbes.com/sites/kateoflahertyuk/2019/03/11/marriott-ceo-reveals-new-details-about-mega-breach/#3c1b59f6155c
https://www.theguardian.com/technology/2018/sep/28/facebook-50-million-user-accounts-security-berach
https://www.forbes.com/sites/leemathews/2017/09/07/equifax-data-breach-impacts-143-million-americans/#772f35a3356f
https://www.cnet.com/news/equifax-ceo-data-breach-heres-what-went-wrong/
https://www.cnet.com/news/equifax-ceo-data-breach-heres-what-went-wrong/
https://www.cnet.com/news/equifax-ceo-data-breach-heres-what-went-wrong/
https://www.techrepublic.com/article/how-to-protect-your-nintendo-account-after-the-recent-data-breach/
https://www.techrepublic.com/article/how-to-protect-your-nintendo-account-after-the-recent-data-breach/

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Collection 1
January 17, 2019: ​Security researcher​ ​Troy Hunt discovered a massive database​ on cloud storage site,
MEGA, which contained 773 million email addresses and 22 million unique passwords collected from
thousands of different breaches dating back to 2008. The information was shared on a popular hacking
forum where they could be shared with other cyber thieves. If you’re concerned your credentials may
have been compromised, visit​ ​Have I Been Pwned?

MGM
February 20, 2020: ​Over​ ​10.6 million hotel guests​ who have stayed at the MGM Resorts have had their

personal information posted on a hacking forum. The data dump exposed includes names, home

addresses, phone numbers, emails, and dates of birth of former hotel guests.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/
https://haveibeenpwned.com/
https://haveibeenpwned.com/
https://www.zdnet.com/article/exclusive-details-of-10-6-million-of-mgm-hotel-guests-posted-on-a-hacking-forum/?ftag=TRE-03-10aaa6b&bhid=28772297924122185557132729256898
https://www.zdnet.com/article/exclusive-details-of-10-6-million-of-mgm-hotel-guests-posted-on-a-hacking-forum/?ftag=TRE-03-10aaa6b&bhid=28772297924122185557132729256898

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Main Section

Table of Contents

Why Read this report 1

Thank You notes 1

Document Licence- Creative Common 1

Data Breaches over time 3

Some of the Recent Data Breaches 7
eBay 7
Marriot 8
Capital One - Misconfiguration 8
British Airways (2018) 8
Facebook via 3rd party app 8
Special Mentions: 8

Equifax (Special mention) – Breach of the database via Apache Struts 8
Nintendo 8
Collection 1 9
MGM 9

Appsec Leader Quote Section 12
Tanya Janca - Shehackspurple 12
Francesco Cipollone - NSC42 12
Grant Ongers - Secure Delivery 13
Andrew Peterson - Signal Sciences 13
Dr. Philippe De Ryck - Pragmatic Web Security 13

Methodology: 14

APPSEC programme 16
DevOps Intro 16
DEVSECOPS 17

Immature and Slow SDLC: 18
Good Reference guide: 19

Security Governance for the DESIGN phase 19
Security for the DESIGN phase 19

Good practices: 20

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Security in Build/Test 20
Good practices: 20

Maturity Models 21
Roadmap to evolution 21
OWASP SAMM 23
BSIMM 24
NSAMM 25

What are the key pillars of NSAMM (NSC42 adaptation of SAMM) and SAMM? 25

SDLC Security 27

Intro 27

Why Secure code is important and how to achieve it 28
Create a feedback loop between activities 29
Gradually push appsec further 30
Adopt a defense-in-depth strategy 31

Agile Testing Quadrants 31

Documented Benefits of a Secure SDLC 33
Type of Testing 34
Static code analysis 35

Benefits 36
Drawbacks 37
Static Code Analysis - Why should I? 37

Web Application Testing - a form of DAST 39
Automated vs Pentesting - differences between pen testing and automated testing 39
Web Application Testing - why should I 39
Documentation 41

Libraries and open source vulnerability analysis 42
Dynamic code analysis 42

Benefits, 43
Drawbacks 43
DAST Why should I? 44

Modern Application Security in Production 44

Introduction 44
Focus on bugs that matter 45
Build feedback loops 45
Deploy proactive web defense 46

Middle Ground 48

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Closing Remarks 49

Thank You notes 49
Contributors 49
Bios 50

Francesco Cipollone 50
Dr. Chris Sellards 51
Tanya Janca 52
Nicole Becher 52
Dr. Philippe De Ryck 53
Vandana Verma Sehgal 53

Working Group & Sections
Appsec Leader Quote Section

 Tanya Janca - Shehackspurple

The current state of application security is that we do not have enough qualified individuals, with relevant
training and experience, to do all of the work that we need doing. According to the Verizon breach report
(2016, 2017, 2018, & 2019), insecure software is the number one cause of data breaches, meaning we are
far from succeeding at protecting our applications and information. I currently see a trend of westernized
countries prioritizing profit over the safety and security of our data and systems. There is a lot of
gatekeeping of the information and training required to become an application security engineer, and this
is hurting us, not helping. I feel we must make education easier to obtain, and higher quality, if we are
ever going to succeed at protecting ourselves against that ever-improving attacks from criminal and other
online threat actors.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

 ​Francesco Cipollone - NSC42

“don’t be used by a tool, use the tool as a tool and or you’ll become a tool”

Developers are our first line of defence and it is our responsibility to give them the tools to make
informed decisions based on risks.

 Grant Ongers - Secure Delivery

Because most breaches can be traced back to code and we have the data to show this, it’s clear that
security is a non-functional requirement for good code and a question of code quality. The only way to
improve the quality of that code is to ensure that developers know what good looks like (through
awareness and education) and that they are empowered (through tooling and processes) to produce code
that meets the mark.

Andrew Peterson - Signal Sciences
It would not be hard to argue that AppSec is the most difficult part of infosec today. Security needs to get
out of our organizational silos and be proactive, helpful partners to the Application development teams
who are in the midst of navigating a generational change in SDLC process and architecture. Ensuring that
we have an awareness of how, where, and what attackers are doing to apps in production as well as
having a clear bug identification and remediation strategy are both fundamental to building an effective
defensive strategy that both development and security teams can carry out.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Dr. Philippe De Ryck - Pragmatic Web Security
“The key to building secure software is knowledge”

Even the most automated security pipelines rely on someone to interpret the results and take proper
action, which boils down to security knowledge.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Section 1 - the HOW
This section focuses more on methodology and tools to insert in the pipeline to secure code, testing
applications. The take on the code vs vendors will be unbiased. There is a lot of free and open-source
software and the adoption of it depends on the complexity of the journey you want to embark on.

Methodology:
Authoring: Francesco Cipollone

Appsec and Devsecops are fundamentally linked but different with nuances. Application security (Appsec
in short) is a collection of methodologies to fix code,
Dev Sec Ops, in my opinion, is about having security early in the lifecycle but address different tools,
methodologies and processes at different stages.
The key point is fixing vulnerabilities as early as possible

Source: ​NSC42 Appsec Program & Security Phoenix statistics

Source: ​WhiteSource

if you need any other reason that the cost above here top 3 reasons:

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.nsc42.co.uk/applicationsecurtiy
https://resources.whitesourcesoftware.com/blog-whitesource/how-to-secure-your-sdlc

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

1. Saving Money and Time - In my view one the biggest reasons to track security bug, before they
become vulnerabilities, as early is because little problems can turn into bigger

2. Interdependence - the closer the code goes to production and the more it stays in production the
more people will rely on it. Ultimately the more dependencies on your API, Data sets and code the
harder and longer the testing will get.

3. Fixing security bugs sets intention and demonstrate excellence - others will follow suit and
example if they see fixing security is not an impossible and insurmountable task

The real power of a leader is in the number of minds he can reach, hearts he can touch, souls he can
move, and lives he can change.” ― Matshona Dhliwayo

APPSEC programme
Francesco Cipollon and Kim Crawley

DevOps Intro
Author - Francesco and Kim

DevOps is the preferred way to develop applications, now that cloud platforms have given organizations
better scalability and flexibility than ever before. By integrating development with operations, DevOps is
the most responsive way to adapt to your organization's ever-changing needs.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Source: DevOps to DevSECops All Day DevOps talk

Synopsys launched the Building Security in Maturity Model (BSIMM) in 2008.

How do application security programs pertain to DevSecOps?

DevSecOpsis a methodology and your app sec program implements it.

John Allspaw 7 Paul Hammond (Velocity 2009)

Without going too in-depth on DEVOPS process the following represents the security element in the
famous CI/CD DevOps loop

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.darkreading.com/cloud/bsimm10-shows-industry-vertical-maturity-/a/d-id/1336316
https://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

So, we combine development and operations from the ground up. Therefore, your security must be built
into your applications every step of the way! Not only is it more expensive to apply security
after-the-fact, but it's also ineffective. Also having security as separate function/process ends up
frustrating everybody, the developer that needs to wait for security to approve controls/user stories,
project and programme managers.

DEVSECOPS
Author: Francesco Cipollone &
Many have debated what is devsecops. We have debated what the meaning is in this document as well…
ultimately we landed in defining DevSecOps as a principle of considering security as early as possible in
the lifecycle.

The rationale is to detect and determine security bugs before they become big and risky vulnerabilities as
well as too complex to be fixed.
The picture below displays the macro area of operation for the security programme to identify the stream
of work. Those areas are also aligned with ​OWASP Open SAMM​ and ​BSIMM ​described in the later
section on ​Maturity Models

Source: ​NSC42 Appsec Program

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.bsimm.com/
https://www.nsc42.co.uk/applicationsecurtiy

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

The picture below displays a traditional process of security testing in code that you might or might not
have experienced before in traditional organizations.
The less mature organization deem security as testing when something gets released into production. or
when the building is on fire...that is generally a bad approach because at that point is either too late
(someone has used a vulnerability and you were lucky enough to notice) and too complex to fix.
In maturing organizations the process to test applications, code and op security

● Pentesting to test an application
● Testing some of the applications with the internal red team
● Probing some production with internal red teams.

Immature and Slow SDLC:

Source: ​NSC42 Appsec Program/Training & Security Phoenix statistics

The organization that undergoes maturity assessment using either the tools (NSC42 Assessment) or the
matrix (BSIMM and SAMM) will introduce elements of security in each part of the application
development lifecycle. A mature SDLC process would look similar to the one illustrated in the picture
below.
The key element in this SDLC process is the security elements as soon as possible and security
methodologies (like threat modelling) aligned to the various phases of the SDLC (Design, Build, Test,
Operation).
Security testing and checks will always be present, but instead of lengthy processes, gate would act just as
a validation fo the parallel security processes.

Good Reference guide:

Source: ​NSC42 Appsec Program/Training & Security Phoenix statistics

The more mature organizations aim to determine the following:

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.nsc42.co.uk/applicationsecurtiy
https://www.nsc42.co.uk/applicationsecurtiy

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

I can probably end up writing an entire book on this section, but to shorten the discussion I’ll mention
below some of the key points that I use to coach and train dev team in ​NSC42 Training

Security Governance for the DESIGN phase
● Verification that policy and procedures, as well as standard, are applied (those could be as simple

as automated Jira ticket/security use stories)
● Policy Standards and Procedure with feedback loops and implementable.
● Blueprints - documents that provide guidance on what pieces of security control (driven by policy

and standard) need to be implemented. E.g. authenticating with a specific method, using a specific
library

Security for the DESIGN phase

● Threat Modelling [e.g. ​Microsoft Threat Modelling​]
● Attack Surface Reduction [​Microsoft SDL- Attack Surface Reduction​]
● Security Functional Requirements/Non Functional Requirements - take the security policy,

procedure and most important standard into something closer and implementable in code (e.g.
libraries to use for a specific level of encryption) [​Open Security Architecture SNFR​]

● More advanced Rapid threat modelling and prototyping [​Rapid Threat Modelling and Prototyping​]

Good practices:
● Create standardized libraries and patterns for accessing system: e.g. have a reference design to

specify which control to apply when interfacing with the corporate authentication system
● Specify the security requirements as default use stories in the Jira template (or other use story

system) to have them implemented by default.

Security in Build/Test
● Scan your code for vulnerabilities [e.g. ​NSC42 Appsec​]
● Implement a network of security champion (trained developers) to help development teams to fix

security issues
● Centralize the approval and the scan for open source libraries
● Centralize the creation of code libraries to access common part of the infrastructure
● Automate the deployment and remove the human factor
● Create a list of approved tools and libraries
● If possible use standardize pipeline and testing methodologies
● Test components using a minimum library of the test (develop the test basing them on the

OWASP good practice guidance
● Validate API
● Create lists of security tests

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.nsc42.co.uk/cybersecurity-training
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/overview-attack-surface-reduction
https://www.opensecurityarchitecture.org/cms/definitions/it_security_requirements
https://www.infosecinstitute.com/skills/courses/rtmp-rapid-threat-model-prototyping/
https://www.nsc42.co.uk/applicationsecurtiy

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Good practices:
● Deprecate functionality/methods, don’t use them and keep updating the reference libraries
● Create centralized methods (code libraries) to access corporate system (e.g. authentication,

authorization, databases)
● Use key management systems
● Use ​OWASP reference good practices​ area to consider are:

○ Input Validation
○ Output encoding
○ Authentication and Password management
○ Session Management
○ Access Controls
○ Cryptographic practices (don’t invent cryptography)
○ Error handling and logging
○ Encryption and secure communication
○ System configuration
○ Database Security
○ File management
○ Memory management

There are tons of reference guide like ​good practices from OWASP:​ and the guidance in the ​Maturity
Models ​section

We will cover methodologies and other tools in the following sections

Maturity Models

Why the maturity Model?

”The most that can be expected from any model is that it can supply a useful approximation to reality: All models are
wrong; some models are useful.”
– George E. P. Box

OWASP SAMM Presentation at All Day Dev Ops

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/migrated_content
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/migrated_content
https://blog.sonatype.com/devops-assurance-with-owasp-samm

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

So what’s a maturity model, and how does it apply to DevSecOps?
Maturity models are how application security can improve over time, usually for years to come. A few
different maturity models have become popular, including ​OWASP SAMM ​and ​BSIMM​. Applying
maturity model standards can help guide your DevSecOps to continuous improvement. But implementing
the appropriate maturity models is key!
Your organization should probably choose to apply both OWASP SAMM and BSIMM. But even having
just one of those models should noticeably improve your application security as time goes on.
For this reason, we apply both methodologies in the ​Application security programme​, ​coaching and
training in NSC42​.

 If your DevSecOps team is unsure how to proceed, we recommend that you start to implement OWASP
SAMM and then consider integrating BSIMM later on. Then map the two maturity models together.
How to utilize those models

1. Do an assessment
2. Map the roadmap of actions and related KCI
3. Measure progress
4. Assess again

Roadmap to evolution
One of the key elements of the maturity model is to define a baseline (where you are), a target state (or
several steps) and what are the actions to achieve the target state.

Application Security Roadmap Part Of NSC42 Appsec Programme

The Image above defines a simple solution we deploy to define a roadmap, an alternative is ​OWASP
SAMM​ that enable to define a roadmap based on interviews questions.
The key to the roadmap tough is a series of tasks to go from one maturity level to the next (called
maturity steps in the following image).
The other key indicator of the velocity (the speed of evolution) from one state to the next is KCI or Key
Change Indicators (alternatively just maturity metrics).
Those are represented in the rightmost part of the Build/Test section of the maturity model with the
frequency of measurements as well as the mapping to the maturity step. One of the key element is the

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://owasp.org/www-project-samm/
https://www.bsimm.com/
https://www.nsc42.co.uk/applicationsecurtiy
https://www.nsc42.co.uk/cybersecurity-training
https://www.nsc42.co.uk/cybersecurity-training
https://www.nsc42.co.uk/appsec-web-app-testing

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

latter, the mapping to the maturity stage. Is pointless to measure how fast we can run if we haven’t
learned how to walk first right? One of the first exercise to do in measuring the maturity is to define what
to measure at each stage. E.g. at the very beginning what you want to measure is how many people get on
board with a maturity programme, at stage 2 that metric is becoming obsolete or not anymore an indicator
of change towards a higher maturity level. The metrics that you want to consider at that stage are for
example the number of teams onboarded on security tools and the number of metrics reported or
repository scanned and so on…. Nonetheless, the element below is just examples of best practices! what
really works for your organization to drive a higher maturity level from a cybersecurity and application
security only you can define.

Application Security Roadmap Actions and Metrics part of NSC42 Appsec Programme

OWASP SAMM

OWASP SAMM is a maturity model that’s developed by OWASP, an organization that focuses on
improving web application security.​ ​From their official site​: "The prime maturity model for software
assurance that provides an effective and measurable way for all types of organizations to analyze and
improve their software security posture.”

 OWASP SAMM is more prescriptive than BSIMM. SAMM is not yet influenced by measurement data
resulting from its maturity assessments. But there are advantages that SAMM has over BSIMM, as noted
by​ ​Jason Morrow​:

“OpenSAMM may not have descriptive assessment data, but since it is prescriptive it can provide
information the BSIMM cannot. For each of the maturity levels, OpenSAMM provides a stated objective.
If you have not already defined objectives in your software security group these can be helpful examples
to draw from in creating your own. I really like those at objectives have been included.”

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.nsc42.co.uk/appsec-web-app-testing
https://owaspsamm.org/
https://owaspsamm.org/
https://jasonamorrow.com/bsimm-opensamm/
https://jasonamorrow.com/bsimm-opensamm/

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

OWASP SAMM provides a point-in-time assessment of the maturity of one’s application security
program as a whole, not just the tools involved in application security. OWASP SAMM is a process
providing a subjective, self-assessment of one's application security program. SAMM focuses on
governance, design, implementation, verification, and operations. When the assessment is complete, a
maturity score and heat map are generated. Heat maps provide leadership with a quick view of the
maturity of the application security program. It should be noted SAMM does not provide a graded score
(Pass/Fail); the focus is on maturity.

Once the maturity level is captured, SAMM assists with developing a roadmap to a maturity level aligned
with the organization's risk appetite. The output provides a visual showing of deficiencies and provides
leadership with the information needed to invest resources to align with the desired maturity model. The
roadmap provided by SAMM is broken into four phases. Depending on how aggressive the organization
wishes to address security, each phase could align with a roadmap strategy addressing deficiencies in
quarter one, two, three, and four (Q1-Q4) of a calendar year.

BSIMM

If you're new to the BSIMM concept, it will help to understand the framework's various domains. Here's a
summary:

● Governance- This pertains to practices that manage, organize, and measure a software security
initiative (SSI).

● Intelligence- This is about gathering information that's required to improve your organization's
SSIs. Organizational threat modelling and proactive security guidance help here.

● SSDL Touchpoints- This is about the software security development lifecycle! They include
practices associated with analysis and assurance of particular software development artefacts and
processes.

● Deployment- Finally, let's get your secure software development into production. This domain is
about practices that interface with traditional network security and software maintenance
organizations.

BSIMM10 has just been recently released. Here are some of the key points from it:

● DevOps adoption has advanced far enough to affect the way we approach software security as an
industry.

● Software security is being led by engineering teams. One reason cited is the technical and
pragmatic demands of application development models like Agile and DevOps. Another is the
need to automate what were once human-driven tasks. Then there's the combination of
unpredictable impacts on delivery schedules, human-intensive processes from existing SSIs
(software security initiatives), and process friction. Finally, there's the ever-increasing pace of
application lifecycle processes to consider.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

● They observed that organizations improve their security maturity over time, eventually focusing
more on the scale, breadth, and depth of their activities rather than constantly starting new
activities.

Inevitably, the maturity of the BSIMM methodology itself has improved over time. Imagine that!

As mentioned, engineering teams are leading innovation in software security. This engineering mindset is
an asset to implementing BSIMM into DevOps, but it requires a cultural change! A lot of progress still
needs to be made in this area. As Contrast Security's Jeff Williams said,
"A lot of people take 'shift left' to mean we should take the legacy tools that are used for security and push
them to developers so they can do their own security. The problem is those tools were built for experts.
Developers don't have the skills to run those tools."

The nice thing about starting your DevOps processes with BSIMM from the very beginning is that once
you have your security baselines, policies, procedures, and automation in place, your applications will be
able to face new challenges in the evolving cyber threat landscape.

NSAMM

With the evolution of the two models at ​NSC42​ we figured why not map BSIM to SAMM and integrate
the two methodologies?
We’ve also selected and aggregated some areas (like Security Build & Test as a single step). The models
are retrofitted and compatible with the standards.

NSAMM Pillars

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.nsc42.co.uk/
https://www.nsc42.co.uk/applicationsecurtiy

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

OWASP Samm Macro Areas

What are the key pillars of NSAMM (NSC42 adaptation of SAMM) and SAMM?

While NSAMM focuses on broader work application (governance oversight, education and cultural shift)
and metrics, SAMM focuses heavily on implementation and verification. Nonetheless, NSAMM maps to
SAMM and BSIMM nicely.

NSAMM Rearranged and simplified
some of the maturity steps highlighted
in OWASP Samm taking the
assessment questionnaire a step further
with the recommendations linked to
various maturity.
Differently from OWASP SAMM the
NSAMM Model is on a scale from 1-5

The NSAMM Model is mapped to
Measurement and Frequency of
measurements

Application Security Roadmap Actions and Metrics part of NSC42 Appsec Programme

No matter which framework you adopt, ultimately the structure falls into this pattern

● Programme of work
● Governance
● Risk Management
● Implementation

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.nsc42.co.uk/appsec-web-app-testing

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

● Verification
● Operation
● Education

NSC42 is currently working on a web assessment version called the ​Appsec Clinic ​that will enable to
evaluate your posture quickly.
The ​Appsec Clinic​ will be have an enterprise/premium component will cover SAMM and BSIMM,
ASVS other standards in a wider assessment with the recommendation of actions. Moreover, you will be
able to provide security teams or auditors (internal and external) the link to the evidence of the
assessment/report.

Section 1 - the What

SDLC Security
Intro

In 2004, Microsoft introduced their ​Security Development Lifecycle​, and in 2006, Gary McGraw
described security ​touchpoints in the development lifecycle in 2006​. Both approaches aimed to improve
the security of software, each with their own vision and approach. But one thing is certain. These
approaches have had a monumental impact on the way we build secure software today.

What once started as a painstakingly slow, mostly manual effort, has rapidly involved in a largely
automated process, running continuously in the background. Righteously so, since modern applications
are more intertwined than ever while being continuously built and released. Today, security in the SDLC
takes the form of automated scanning in the deployment pipeline, continuous monitoring of dependencies
for vulnerabilities, and manual testing by skilled appsec engineers and bug bounty hunters.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://landing.nsc42.com/appsec
https://landing.nsc42.com/appsec
https://www.microsoft.com/en-us/securityengineering/sdl
http://www.swsec.com/

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

From Francesco’s NSC42 Security Phoenix Presentation

While the process today looks vastly different than it did 15 years ago, the fundamentals are still the
same. Vulnerabilities need to be fixed as early in the life cycle as possible. For example, applying static
analysis techniques during development will flag common security vulnerabilities in the code being
developed. As much as you try, production apps will always have vulnerabilities, so you need processes
to manage to report. Today, that means having automated scanners to find a vulnerability in an
application’s dependencies. Additionally, a dedicated security team needs to triage incoming reports from
security researchers and bug bounty hunters. Regardless of when they are discovered, vulnerabilities need
to be analyzed, triaged, and remediated. Many of these tasks can be automated, but for now, humans are
still actively involved in this life cycle. More often than not, the application developers cooperate with the
organization’s appsec team to combine expertise when addressing vulnerabilities. This cooperation is
crucial to develop an effective and productive security culture.

This section offers a deep dive into the various security components in the SDLC. Topics include the
different flavours of Application Security Testing, Vulnerability Management, and Software Asset
Management.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.youtube.com/channel/UCVgsq-vMzq4sxObVonDsIAg
https://www.youtube.com/watch?v=Dzecubl5Qx8&t=122s

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Application Security Program and Steps from NSC42

Why Secure code is important and how to achieve it
Building 100% secure applications is a utopian pipe dream. Security in any real-world application is
always a moving target. Software engineers or operations engineers will always make mistakes. New
threats or vulnerabilities will
 be discovered continuously. Even the threat model of the application may change over time. Instead of
chasing this absolute state of security, we need to strive to set up proper processes to maximize the
security of an application.

Fixing Bugs The earlier The better

Many organizations work hard on deploying security processes to support the quick remediation of
security issues. While extremely useful, remediation is only half of the picture (or even 30%, but let's not
argue about it). Complementary to remediation is prevention. Vulnerabilities that don't make it into the
application do not need to be remediated.

I'm sure you are familiar with the axiom that the later in the lifecycle a vulnerability is discovered, the
more it costs to fix it. Vulnerabilities that are never written induce zero additional costs to remediate since
they were never there.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.nsc42.co.uk/appsec-web-app-testing
https://www.nsc42.co.uk/appsec-web-app-testing

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Of course, it's easy to say ​"just prevent vulnerabilities"​, but doing that in practice is entirely different.
Preventing vulnerabilities requires a mature appsec program, where various activities are tuned into each
other. A few example activities are:

● making sure software engineers can follow proper security training
● providing detailed secure coding guidelines to avoid common vulnerabilities
● dev-time and build-time application security testing
● pentesting and responsible disclosure programs for production applications

In this section, we will take a closer look at the importance of creating feedback loops between various
security activities in the SDLC. Further sections in this chapter provide an in-depth look at implementing
some of these security activities. Remember that even with the perfect processes, there will always be
vulnerabilities that need to be remediated.

Create a feedback loop between activities

The image picturing various security activities throughout the SDLC, which was included earlier in this
chapter, already included a feedback loop between multiple activities. This feedback loop is essential to
ensure that security activities are relevant and useful.

There are no strict rules about which activities can provide feedback to each other. Interactions between
activities are not static and can change over time. Instead of giving a rigid list that imposes restrictions,
we will discuss a few examples instead. Use these examples to customize your appsec program.

The holy grail, or validation, of many appsec programs, is a pentest by an external company. Typically,
such a pentest result in a report with findings, some critical, many important, and even more low-risk
findings. Such a report offers valuable feedback to make other activities more relevant. Developers can
use this feedback to fix vulnerabilities. The feedback will likely push application security testing to
ensure the vulnerabilities are fixed. Ideally, the findings even drive security training and secure coding
guidelines to mature the appsec program further.

Also, the KCI illustrated in the ​Previous Maturity Metrics ​chapter help identifying if the appsec
programme is delivering the expected results

In turn, secure coding guidelines also drive application security activities. By following a strict set of
guidelines, static analysis tools can be configured to increase their precision. Additionally, specific
critically insecure code paths can be banned from the codebase using code scanning tools.

Another example occurs very early in the lifecycle. In-depth security training for developers and appsec
teams often drives the development of organization-wide secure coding guidelines, which in turn drive
application security testing.
As you can see from these examples, the feedback loop between activities is essential. Consequentially, it
is imperative to foster a culture that supports feedback without conflict or blaming.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Gradually push appsec further

Building an effective appsec program is not a one-off activity. It's not something you set up and just
works. Instead, appsec programs need to be supported and nurtured. Over time, they grow and become
much more powerful. But doing so requires you to take it one step at a time.

In reality, most organizations do not start from a clean slate. They are doing some appsec activities.
Regardless of their effectiveness, these activities are the perfect starting point to start growing an appsec
program.
Let's discuss an example using a common scenario as a starting point: a regular pentest of an application.
We're not talking about the effectiveness of pentesting here, but are more interested in the outcomes. If
the pentest is the only activity in the appsec program, you will have some remarks that came out of it.
Good, that is your feedback.

Now, use the most critical points from that pentest to drive activities earlier in the lifecycle. If the pentest
of a React application points out that there are numerous Cross-Site Scripting (XSS) vulnerabilities, you
should first remediate them. Next, you should go through the application to address other cases. Finally,
you need to find a way to prevent them in the future.
Based on the activities we discussed before, this would start with training developers on the dangers of
XSS and how such vulnerabilities are introduced in a React application. Next, you should implement a
step in the build process that checks the codebase for dangerous coding patterns. A simple way to achieve
that is by running a linter with a couple of security-specific rules. Sure, this is not going to be the perfect
XSS defence, but it's a step forward.

With that done, you can start building a React security library for internal use. This library will offer safe
functions to perform potentially unsafe actions, such as putting HTML in the page. This library is built by
security professionals and thoroughly vetted for security. With that library, you can now draw up secure
coding guidelines that dictate the use of this library for certain features.
With the mandatory use of the security library, specific insecure code paths can be eradicated from the
application. Update the linting rules to ensure that the use of these code paths triggers the build to fail.
Now you have assured that a developer can no longer introduce an XSS vulnerability in a React
application.

But we can push it even further. We can use IDE plugins to perform code analysis at development time,
allowing us to notify the developer the moment they use the insecure code path. This gives developers
immediate feedback, instead of only at build time.
Reaching this point means you will have gained a ton of appsec maturity. Confidence in these coding
guidelines and tools also allows you to focus future pentests on other areas of the application, making
them much more valuable.

Adopt a defense-in-depth strategy

Defense-in-depth is critical in every appsec program. That holds both for activities in the SDLC and
security mechanisms in an application. Let's take a look at a few examples.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Developer training, secure coding guidelines, application security testing, and pentesting all focus on
avoiding vulnerabilities in an application. Having each of these steps in place builds a solid
defense-in-depth strategy that will be effective at catching vulnerabilities before they reach production.
Similarly, a defense-in-depth strategy should be applied for security mechanisms too. The recent incident
with a ​Starbucks API​, exposing approximately 100 million records and previously seen Facebook,
provides us with a teachable moment. The incident in question was a bug bounty report, but the
implication of the attack is the same. Without diving too deep into the details, what happened was that a
proxy server running on the perimeter of the network forwarded a couple of requests it should not have
forwarded. Through that loophole, the attackers could query an internal database and extract information.
This type of problem is known as a "​Confused Deputy​".

The vulnerability at the basis of this breach was the proxy server forwarding requests it should not have
forwarded. However, the internal system should not have disclosed that much information without issue.
Ideally, it would have rejected that type of access, but even triggering an alarm bell would have been a
useful response. By shielding the system from outside access, it was mistakenly believed to be secure. A
defense-in-depth strategy would have likely prevented the exploitation of this vulnerability.
To conclude, there is one critical lesson to draw from the Starbucks example: it is tough to make accurate
security assumptions about a system or application. The internal system was believed to be unreachable
while it was not. As a consequence, you should avoid wasting time on determining the exact
exploitability of a disclosed vulnerability. Discussions on whether a database without any authentication
or restrictions is reachable are not very productive. Instead, recognize the severity of an issue and aim to
address it.

Agile Testing Quadrants
Now moving into one of the core section that probably everyone is considering or doing let’s explore the
testing stages and see how all the products fits together.

Security testing, regardless of the tool, aligns with one of the four agile testing quadrants. Understanding
where each tool fits in the four quadrants enables one to understand the level of effort, time, and value the
tool(s) provide. Value is provided to decision-makers determining return on value and for security
professionals aligning security tests with standard development tests. Aligning security tests with
developer methodologies is a strategy recommended by Bell et al. (2017) and Kim et al. (2016).

Testing falls in one of four categories: support programming, business-facing, critique project, and
technology facing (Humble & Farley, 2011). Each category includes automating a manual testing process.
The tests are further categorized by automated or manual. The diagram below depicts the four testing
quadrants.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://samcurry.net/hacking-starbucks/
https://en.wikipedia.org/wiki/Confused_deputy_problem

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

(Gregory & Crisping, 2009)

Business-facing tests supporting development are often referred to as functional or acceptance tests and
are executed in a production-like environment (Humble & Farley, 2011). Acceptance testing validates
features meet defined business requirements, referred to as the happy path, and are based on user stories.
While there are functional and nonfunctional acceptance tests, tests in this quadrant focus on the
functionality of the feature. Successfully passing acceptance tests results in the application changes being
complete, as it proves the change meets defined requirements and integrates with the entire application.

Technology-facing tests supporting development are tests written and maintained by developers.
According to Humble and Farley (2011), tests include unit, component, and deployment tests. Unit tests
run in isolation, never interfacing with databases, networks or other systems and focus on a specific piece
of code. Shahin, et al. (2017) argued identification of flaws is possible without interfacing with actual
dependencies. Unit testing should have high code coverage and be extremely fast. Due to the self-service
nature of unit tests, the code coverage, and the speed, they are a critical part of the feedback loop,
providing developers instant feedback on code fitness (Humble & Farley, 2011).

Component testing, sometimes referred to as integration testing, focuses on larger portions of the
applications and functionality (Humble & Farley, 2011). Testing in the component phase is not isolated
like unit testing. Component testing involves interfacing with components, resulting in slower test times.

Deployment tests involve deploying the applications and validating installation, configuration, and
interaction with other services (Humble & Farley, 2011). The environment in deployment testing mimics
production. Testing in a production-like environment ensures the feature interoperates with all
components of the application, the hosting system(s), network, and potential backend databases.

Business-facing tests critiquing the project are scoped to validate the application will provide the
expected value users expect (Humble & Farley, 2011). Users may find using the application does not

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

work as expected or breaks when performing some activity developers did not plan for in advance. The
manual portion of testing involves users interacting with the application and providing insight on ways to
make the application better, more user friendly, or some other way to improve the application. Humble
and Farley (2011) claimed the testing performed in this phase is often performed as part of a beta
program.

Technology-facing tests critiquing the project have two categories: functional and non-functional tests
(Humble & Farley, 2011). Security, availability, and capacity testing fall in the nonfunctional testing
category. Nonfunctional testing are parts of the application users do not normally interface with, however,
are impacted by deficiencies with any of the nonfunctional qualities. Humble and Farley (2011) claimed
nonfunctional tests are not viewed as important as functional testing and normally run less frequently or
are performed near the end of the pipeline.

From a security perspective, DAST and abuser stories run in acceptance testing and would be considered
technology-facing tests critiquing the project. DAST tests all the parts of an application, the system
hosting the application and systems interfacing with the application (Bell et al., 2017). System testing
provides the environment for DAST to perform runtime security tests.

Abuser stories align with user stories but provide an attacker's view of the application, occurring late in
the process (Bell et al, 2017; Bird, 2015). Fully testing an attacker's perspective of the application
requires a complete environment provided during the system’s phase of acceptance testing. The security
tests described focused on non-functional qualities of the application, and occur in later stages of the
pipeline.

SAST aligns with technology-facing tests critiquing the project. Chess (2004) stated SAST does not
validate functional qualities of an application, putting it in the nonfunctional category. However, unlike
DAST and abuser stories which fall at the end of the pipeline, SAST occurs early in the pipeline. Testing
early in the process follows the concept of shifting security left, providing an opportunity to maximize the
value of the feedback loop by providing immediate feedback while the cost to remediate is low (Bell et
al., 2017; Vehent, 2018).

Documented Benefits of a Secure SDLC

Mainstay Partners (2014) identified companies implementing software security assurance (SSA) solutions
in DevOps programs could realize potential cost savings of $2,400,000 annually, an estimated savings of
$44,000 per application. Cost savings were attributed to faster scanning driving down overall code
scanning costs, fewer vulnerabilities reducing time spent patching or mitigating vulnerabilities, improved
productivity, and streaming compliance requirements. The cost savings were realized by embedding
security through the entire SDLC process.

Respondents reported implementing SSA solutions during SDLC decreased the number of vulnerabilities
per application, the average time required to fix vulnerabilities, and the reoccurrence of repeated
vulnerabilities. The study focused on implementing SSA during all phases of the SDLC, resulting in the
study not identifying the effect of specific tools or processes (SAST, DAST, SCA, etc.). Research by
Mainstay Partners provided evidence of embedding a suite of security testing in the SDLC on the security
hygiene of code.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Type of Testing

Writing a section on all the possible testing could take a long time, we will summarize here some of the
most used testing methodologies that we’ve seen implemented and effective. Below an extract of a very
good article from ​SEI of Carniegie Mellon University​ on all the type of testing

Source : ​SEI of Carniegie Mellon University

● Static Application Security Testing (SAST)​ - SAST tools can be thought of as​ white-hat or
white-box testing​, where the tester knows information about the system

● Dynamic Application Security Testing (DAST)​ - In contrast to SAST tools, DAST tools can be
thought of as​ black-hat or black-box testing​, where the tester has no prior knowledge of the system

● Origin Analysis/Software Composition Analysis (SCA)​ - ​Software-governance processes that
depend on manual inspection are prone to failure​. SCA tools examine software to determine the
origins of all components and libraries within the software. ​[not covered here]

● Database Security Scanning​ - The​ SQL Slammer​ worm of 2003 exploited a known vulnerability
in a database management system that had a patch released more than one year before the attack.
[not covered here]

● Interactive Application Security Testing (IAST) and Hybrid Tools​ - Hybrid approaches have
been available for a long time, but more recently have been categorized and discussed using the
term IAST. ​[not covered here]

● Mobile Application Security Testing (MAST) ​- MAST Tools are a blend of static, dynamic, and
forensics analysis. They perform some of the same functions as traditional static and dynamic

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://insights.sei.cmu.edu/sei_blog/2018/07/10-types-of-application-security-testing-tools-when-and-how-to-use-them.html
https://insights.sei.cmu.edu/sei_blog/2018/07/10-types-of-application-security-testing-tools-when-and-how-to-use-them.html
https://en.wikipedia.org/wiki/White-box_testing
https://en.wikipedia.org/wiki/White-box_testing
https://en.wikipedia.org/wiki/Black-box_testing
https://www.forrester.com/report/Use+DevOps+And+Supply+Chain+Principles+To+Automate+Application+Delivery+Governance/-/E-RES118681
https://www.forrester.com/report/Use+DevOps+And+Supply+Chain+Principles+To+Automate+Application+Delivery+Governance/-/E-RES118681
http://en.wikipedia.org/wiki/SQL_Slammer

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

analyzers but enable mobile code to be run through many of those analyzers as well. ​[not
covered here]

● Application Security Testing as a Service (ASTaaS)​ - As the name suggests, with ASTaaS, you
pay someone to perform security testing on your application. The service will usually be a
combination of static and dynamic analysis, penetration testing, testing of application
programming interfaces (APIs), risk assessments, and more. ​[Not covered in this current
version of the report, current under work at Security Phoenix]

● Correlation Tools​ - Dealing with​ false positives​ is a big issue in application security testing.
Correlation tools can help reduce some of the noise by providing a central repository for findings
from other AST tools. ​[not covered in this version of the report, current under work at
Security Phoenix]

● Test-Coverage Analyzers​ - Test-coverage analyzers measure how much of the total program
code has been analyzed.

● Application Security Testing Orchestration (ASTO)​ - ​ASTO integrates security tooling across
a software development lifecycle (SDLC)​. While the term ASTO is newly coined by Gartner since
this is an emerging field, there are tools that have been doing ASTO already, mainly those created
by correlation-tool vendors.

Static code analysis

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://en.wikipedia.org/wiki/False_positives_and_false_negatives
https://www.gartner.com/doc/3772095/hype-cycle-application-security
https://www.gartner.com/doc/3772095/hype-cycle-application-security

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Static application security test (SAST), also called static code analysis, analyzes source code for
vulnerabilities. SAST differs from testing methodologies such as DAST, as SAST analyzes the code in a
non-running state. There are two approaches to SAST: analysis of the source code and analysis of the
compiled bytecode. Analysis of the source code does not analyze the code in native format; analysis
begins with creating an intermediate representation of the code using an abstract syntax tree (AST).
Depending on the specific tool, ASTs are further decomposed into control flow graphs and data flow
graphs. Analysis of the source code is conducted on the CFGs/DFGs.

The second approach is working with compiled bytecode. A noted drawback described by Logozzo and
Fahndrich (2008) was that bytecode may not be an exact replica of the source code because compilers
optimize the code. Bytecode analysis is considered faster than source code analysis, which aligns well
with the DevOps First Way: Fast Flow. Bytecode analysis does not require name resolution or type
checking - work already completed by the compiler. While several benefits are presented for bytecode
analysis, a negative identified is the lack of precision provided by SAST that analyzes the source code.

Benefits

SAST provides one of the first opportunities in the build process to analyze the fitness of source code.
SAST aligns with technology-facing tests critiquing the project. Due to SAST's alignment with
development testing, it occurs early in the build process. Early testing helps maximize the efficiency of
tests aligned with the DevOps First and Second Way: Fast Flow and Fast feedback. Developers are
provided quick feedback on the fitness of the code and potential vulnerabilities that need to be addressed.

Due to SAST being a white box test, having access to the source code, SAST has the potential to find
vulnerabilities other testing methodologies may not identify. Antunes and Vieira (2009) conducted an
experiment where they tested the effectiveness of penetration testing and SAST to detect SQL injection
vulnerabilities in a known vulnerable application. The results showed SAST located more SQL injection
vulnerabilities than penetration testing. Benefits from the study point to the effectiveness and potential
return on the value of using SAST to test modular pieces of code early, rather than relying on penetration
testing the application late in the development process.

Veracode (2018) conducted a study of their customer base. Results identified the median scan rate of
source code was twice a year; the same median scan rate noted in their 2017 study. Veracode identified
the second scan was completed within days of the first scan. Veracode (2018) hypothesized developers
were addressing policy requirements, rather than addressing risk. Embedding Automated SAST in the
build processes offers an opportunity to increase the scan rate.

The research identified organizations conducting 300 or more scans a year showed the vulnerability
persistence ratio was 12 times shorter than applications aligned with the median scan rate (Veracode,
2018). The study was not able to identify if increased scan rates were manual or automated; however,
Veracode hypothesized automated, incremental scanning identifies vulnerabilities quicker and promotes
shorter remediation windows. Veracode claimed results from the study indicated increased scan rates
reduced risks associated with applications. Veracode believed the increased scan rates pointed to the
value of security in DevOps.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Drawbacks

Historically, SAST tools were plagued with false positives (FP) (Dimastrogiovanni & Laranjeiro, 2016).
The authors further claimed the growing complexity of applications presented challenges for SAST to
accurately identify vulnerable code. Bird (2017) claimed development teams spend a lot of time weeding
out FPs, slowing the velocity of DevOps.

According to Sozer (2015), for every thousand lines of code SAST will generate 40 alerts. Compounding
the problem, SAST alerts have shown to have a false positive rate of 30% to 90%. Sozer (2015) further
claimed limited resources often resulted in developers ignoring or suppressing alerts to ensure the code is
compiled.

Antunes and Vieira (2009) conducted research on three SAST tools; the SAST tools tested presented with
23%, 26% and 27% false positives. A finding of a specific false positive related to SQL injection was
flagged because concatenation of the string values included one input parameter. The finding was a false
positive because the code executed a function to inspect the query and throw a runtime exception if a
non-integer value was detected. According to Antunes and Vieira (2009), false positives such as the one
shown in the research are common of SAST implementing data flow analysis, as they do not identify
functions called to validate input or understand conditional logic. Tuning SAST tools based on threat
modelling helps reduce the generated false positives, making the tool more effective (Bell et al., 2017).

Researching FPs is seen as a manually intensive process distracting developers from focusing on writing
code and delivering value to the organization (Dimastrogiovanni & Laranjeiro, 2016; Hall, 2017). A
research study conducted by 451 Research (2018) found FPs as a barrier for SAST adoption. Forty-six per
cent of respondents claimed FPs negated the benefits provided by a SAST solution.

Static Code Analysis - Why should I?

SAST has the potential to reduce the costs associated with identifying and remediating vulnerabilities in
source code. Baca, Carlsson, and Lundberg (2008) tested three SAST tools against code known to be
vulnerable. The study identified SAST reduced the risks associated with the applications. Additionally,
implementing SAST would have provided a cost savings of 17% based on previously reported failures
associated with the vulnerabilities.

SAST is one of the first tools run in a pipeline and provides opportunities for fast feedback on code
fitness. Research by 451 Research (2018) revealed 51% of the companies identified SAST as a critical
tool to embed in the pipeline. DAST was selected by 59% of respondents as more important than SAST,
even though DAST executes later in the pipeline, which would cause longer lead times to identify
vulnerabilities. The further down the pipeline security tests find vulnerabilities, the more time between
code commit, identifying and remediating vulnerabilities. According to Bell et al. (2017), security testing
at code commit provides an early point in the process to perform security testing, potentially avoiding
time delays identifying vulnerabilities.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Bell et al. (2017) stated ensuring proper code coverage and gaining visibility of the security fitness of
code can only be realized by automating the SAST process. Automated SAST (ASAST) as part of the CI
process ensures code is scanned during every commit and aligns with developer testing practices. A
SAST should focus on incremental scanning (Bell et al., 2017; Bird, 2015). When code is committed
initiating tests in the CI environment, only the modified code should be scanned. Incremental scanning
reduces overhead, increases scan speed, and allows developers to experiment without introducing delays;
full SAST scans of the codebase are completed nightly or weekly, as the process is time-intensive and
does not align with pipeline processes (Bell et al., 2017; Bird, 2015; Vehent, 2018).

Automated SAST, using secure frameworks and secure compiler configurations makes writing secure
code easier and lowers the likelihood of coding mistakes introducing vulnerabilities in the application
(Bird, 2015). The author defined the tasks as secure by default; processes designed to remove the
complexity of application security by working in the framework. Continuous testing ensures the most
recent version of the code is in a continuous delivery state, ready for continuous deployment (Smada et.
al, 2018).

Addressing FPs and low developer adoption begins with properly onboarding the application. Merely
handing developers a SAST tool will not meet the risk reduction goals of the business. Plugging
automated SAST into your pipeline without proper tuning will result in developers bypassing the job or
suppressing findings.

Scan the code and review the findings with the developers; they know their code and can help identify
false positives. Understand where the application receives input and map that to trust boundaries. Nine of
the OWASP Top 10 manifest at trust boundaries. Knowing where input is accepted and what trust
boundaries the data crosses will help when analyzing SAST findings. There may be an input validation
finding, but the source is a trusted database that untrusted users can never write to; mark it a false positive
and move on (if the application allows users to write to the database, even though the database is on a
trusted network, reads from the database should be considered as untrusted and data sanitized/validated).

Does it use a control flow graph or data flow graph? When performing taint analysis, identifying sources
(input) and following the flow to a sink (writes to a database, files, to a user’s browser), the code may
validate input and still show vulnerabilities if your SAST uses Data Flow Analysis (DFA). DFA
performed on a data flow graph is great at finding sanitization methods; however, DFA does not do well
with validation methods, as DFA doesn’t understand conditional logic. Mark it a false positive or
configure the tool to understand the validation so the findings don’t show up again.

Review your logs to ensure scan quality and accuracy. Are you scanning files that should be excluded,
e.g., test code, 3rd-party components, and/or code not used in production? Are you getting good code
coverage? Some SQLi will show up because of odd approaches to parameterized statements. Mark them
false positives and move to the next findings. Continue until all findings are reviewed. Rescan the code.
Now you have actionable data to provide developers. Only after properly onboarding an application,
weeding out false positives, and ensuring accurate scans is it acceptable to embed SAST in a DevOps
pipeline.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

The immediate goal when inserting automated SAST in a pipeline should not be to fail builds based on
findings. While onboarding and tuning scans may have occurred, the initial goal should be ensuring the
tool works correctly. Second, ensure scan times fall within a predefined range, such as 5-10 minutes.
Having defined scan times allows SAST to be a variable one can calculate when determining predictable
build times. Finally, analyze findings to validate quality findings and true positives; at this point, moving
to a fail-the-build model is an option; marking builds as unstable is also suitable during the maturation
phase.
When you insert SAST in a pipeline, customize the queries to the application. What languages and
frameworks are used? Are you failing on highs only? If so, customize the queries to just scan the
languages/frameworks used and only look for high vulnerabilities. Why look for medium/low if they will
not cause a build to fail? Schedule nightly full scans to look for medium and low vulnerabilities. Write the
findings to a bug tracking system.

Does the application have 8 high vulnerabilities? Configure the build to fail on 9. This will allow you to
leverage the benefits of automated SAST without failing on current vulnerabilities. However, it will
prevent new highs from being introduced to the application, while tracking remediation efforts of the
current 8 highs.

DevOps is based on the principles of fast flow, quick feedback, and continuous learning. Spending the
initial time upfront to properly onboard the application and customize pipeline scans to the application
will facilitate these three principles. It will enable you to quickly perform incremental scans (only scan
code/files that have changed) on every commit (fast flow), fail or pass builds quickly (quick feedback),
and provide feedback for developers to learn from coding mistakes leading to vulnerabilities (continuous
learning).

Web Application Testing - a form of DAST
 Automated vs Pentesting ​- differences between pen testing and automated testing
 Automated Web application testing is the practice of implementing toolset to test APIs of web
application (or alike) and full website functionalities against a predefined set of

Web Application Testing - why should I
Web Applications if we include Cloud-based applications those are the front-facing surface. Companies
don't open the internal network to everyone but they open web applications. With Cloud, you can't
prevent applications from going public. E.g. if you are using Office365. It is available everywhere. That's
why web apps become the most lucrative and most common attack surface.

Students or the beginners in AppSec always ask the question, where to start the pentesting on applications
or security testing of applications.

It starts with the thought of an application designing. Security has to be part of the whole Lifecycle of the
application from Designing to move to production. We can say we will start later or we can’t consider the
security. We have seen the biggest breaches of the decade in the past couple of year e.g. Equifax, British
Airlines, and many more. This is not a blame game. We just need to be considerate of security. Security
should not be considered as a side actor, it has to be a key player.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Security needs the utmost priority when we talk about Modern Application, Serverless applications or
functions as a service. The needs to understand and implement security is very important. The
organisations have been breached and breaches will happen. However, we can minimise the impact or
might be able to eliminate to a certain extent with the efforts.

Application Security goes in multiple phases as per SDLC
· Requirements
· Design
· Implementation
· Verification
· Release
· Response

All these phases or application development lifecycle should have security.

Architects need to architect the design security, developers should be trained on secure coding,
Operations should be made aware of the secure testing procedures, and applications should be tested
post-production. Security has to be made a continuous cycle.

Not to Miss​ – Security Training shouldn’t be just for security teams. It should be for all the teams at each
level of security lifecycle.

The first and foremost thing before starting any application security testing, Understand the application
and the attack surface. Check the application URLs, IP’s, platform and other details.

Some of the questions could be asked like
· What is the language that the application is built on
· What is the platform behind the application
· The application is Internet-facing or Intranet facing
· Understand client and server communication model
An important thing to remember, don’t start the testing with initiating the scans from automated scanners.

For the beginners, the best to start the testing is on vulnerable applications to get the feel of how the
pentesting is being done. There are multiple vulnerable web applications which are available for testing.

● Damn Vulnerable Node Application
● Damn Vulnerable Web Application
● Security Shepherd
● bWaPP
● Mutilldae
● Owasp Juice Shop

The one amazing technic to find security bugs which are open is Google Dorking. Searching with certain
queries on google search which might provide certain confidential information. Gather as much
information to get to know about the application.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://github.com/appsecco/dvna
http://www.dvwa.co.uk/
https://owasp.org/www-project-security-shepherd/
http://www.itsecgames.com/
https://github.com/webpwnized/mutillidae
https://owasp.org/www-project-juice-shop/

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Use Nmap the application server for possible open ports, applications or services running. If there are
applications with old versions, they might be susceptible to attack.

Setting up a lab is the next important and challenging task. While you are scrubbing the information about
the application, set up the proxy (BurpSuite, Zap or any other) and start the spidering/crawling. About the
proxy, Proxy acts as a middle man between the browser and the server. You can intercept the request
which is being sent to the server and check the response from the server. This really helps in analysis the
application and crafting attacks against the applications. Proxy runs on the local machine from where you
perform the testing.

I use the proxy in Kali Linux which is a Virtual machine with all the magical security testing tools. Under
the web application security tools, you can find BurpSuite, Zap and others. While configuring, Proxy and
Browser should have the same configuration. You can automate the fuzzing by using proxy and perform
many other useful tasks like finding the hidden directories, creating CSRF POC’s, etc.

Once the proxy is set up, we can get starting with the application pentesting. We can take Owasp Top 10
as the basis to start our pentesting on the vulnerable web applications

OWASP Top 10-2017 vulnerabilities are:

● Top 10-2017 A1-Injection
● Top 10-2017 A2-Broken Authentication
● Top 10-2017 A3-Sensitive Data Exposure
● Top 10-2017 A4-XML External Entities (XXE)
● Top 10-2017 A5-Broken Access Control
● Top 10-2017 A6-Security Misconfiguration
● Top 10-2017 A7-Cross-Site Scripting (XSS)
● Top 10-2017 A8-Insecure Deserialization
● Top 10-2017 A9-Using Components with Known Vulnerabilities
● Top 10-2017 A10-Insufficient Logging & Monitoring

Wonderful references to know that can information from are:

● OWASP Top 10 user guide
● Web application hackers handbook

Open Web Application Security Project (OWASP) which is a non-profit organisation or community has
contributed a lot to the web application security space.

These three areas where the Projects concentrate a lot is

● Tooling - Predominately attacker focused wherein tools will help you find bugs, slowly owasp is
moving to devsecops as well.

Documentation

● Owasp ASVS
● OWASP Security knowledge framework

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A1-Injection
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A2-Broken_Authentication
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A3-Sensitive_Data_Exposure
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A4-XML_External_Entities_(XXE)
https://www.owasp.org/index.php/Top_10-2017_A5-Broken_Access_Control
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A6-Security_Misconfiguration
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A8-Insecure_Deserialization
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A10-Insufficient_Logging%252526Monitoring
https://owasp.org/www-pdf-archive/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.amazon.com/Web-Application-Hackers-Handbook-Exploiting/dp/1118026470
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-security-knowledge-framework/

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

● OWASP API testing

You may have a project at different levels

● It’s an open cultural organisation and anyone can contribute and share it to the world
● Go through them in detail, understand the concepts and then start the testing.

Along with that third is the Community part where OWASP is bringing people together to share
knowledge and continuous learning. Besides community, owasp has conferences and owasp summits.

We should have a clear idea of what are the vulnerabilities which exist on the application, what is the
impact or risk if the vulnerability is present on the application and how to mitigate them. If there is a
vulnerability that exists on the server or an application which is not required anymore that should be
decommissioned.

Applications are always easy targets, however, if we have proper security measures and processes in
place, the risk impact reduces to a great extent.

Some of the best practices.

● All input data should be validated
● Implement a web application firewall (WAF)

Libraries and open source vulnerability analysis

From ​Synopsys report Why should I

● In 9 of 17 industries, 100% of codebases contained open source. Open Source made up 70% of the
audited codebases

● 75% of codebases contained vulnerabilities (up from 60% in 2018). 49% contained high-risk vulnerabilities
(up from 40% in 2018)

● 33% of codebases contained unlicensed software. 67% of codebases had license conflicts
● 82% of codebases had components of more than four years out of date. 88% of the codebases had

components with no development activity in the last two years
● Black Duck Audits found an open-source in nearly 99% of codebases audited in 2019
● In 2015 36% of code audited was open source. Today the figure is 70%.

Dynamic code analysis
Difference between SAST and DAST is that there is more context on the code (data is running in the
application) but the test could be conducted externally (API web interfaces) or from within the application
(elements of code within the application), this differentiation could be linked to ​black-hat or black-box
testing​, where the tester has no prior knowledge of the system

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://owasp.org/www-project-api-security/
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2020-ossra-report.pdf
https://en.wikipedia.org/wiki/Black-box_testing
https://en.wikipedia.org/wiki/Black-box_testing

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Source : ​SEI of Carniegie Mellon University

Benefits,
Dynamic application security testing (DAST) is considered backbox testing because it does not have
access to the application's source code. DAST sends HTTP requests and evaluates the responses to
identify all the locations where an application accepts input. The process is called crawling the website,
allowing the application to catalogue the URLs. Areas of an application accepting input are considered
the attack surface (Mendele, Madou, & Sum, 2016). The catalogued URLs are then scanned for
vulnerabilities. DAST analyzes an application by submitting various inputs against an application in an
executed state to identify unexpected behaviour; unexpected behaviour and error messages may indicate a
vulnerability exists in the application.

Unlike SAST, which analyzes source code, DAST tests the application, the system hosting the application
and systems integrated with the application. DAST enables identifying vulnerabilities in the application, a
misconfigured web server hosting the application, and vulnerabilities in a connected backend database -
e.g., SQL injection. Running DAST against application tests within the context and environment where it
is deployed (Halfond, Choudhary, & Orso, 2011).

Drawbacks

Drawbacks associated with DAST are it cannot analyze all execution paths of an application and ones that
will never be executed (Prähofer et al., 2016). DAST is limited to specific use cases in a running state and
may not test all aspects of the application. Vulnerabilities identified during DAST may be more
complicated to fix, especially if fixing would break the functionality of the application. DAST executes

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://insights.sei.cmu.edu/sei_blog/2018/07/10-types-of-application-security-testing-tools-when-and-how-to-use-them.html

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

late in the testing phase of the SDLC, aligned with systems testing. Testing and fixing late in the SDLC is
more expensive in terms of time, resources, and financial costs.

DAST may render an application unstable or nonresponsive (Mendele, Madou, & Sum, 2016). When an
application is under load, the unpredictable nature of crawling and scanning an application may exhaust
system resources. Additionally, large websites with numerous URLs and redirects may exhaust the
scanner's resources causing the scanner to become unresponsive. This presents the problem of hanging
scans and potentially distorted results as the scan fails to test all available URLs and possible
vulnerabilities.

DAST Why should I?

SAST must understand the language and framework supporting the application. DAST is language
agnostic and technology independent. DAST can work with applications developed using different
languages and running on different platforms because it works within the HTTP protocol. Relying on
HTTP requests and responses allows DAST to work with any language and web application framework
(Acunetix). DAST provides an attacker's view of the application; running DAST on a live application
provides a proactive approach to securing a web application.

Modern Application Security in Production

Introduction

The fast pace and iterative nature of the modern software delivery lifecycle have forced a fundamental change in
the way organizations to approach application security. In the past, security teams often viewed their goal as to
slow development, inhibit change, and prevent vulnerabilities from reaching production. As digital transformation
accelerates, developers and DevOps teams have held very different priorities: to speed innovation and bring code
to market as quickly as possible—even if this means leaving a few bugs to be addressed in the next iteration. As a
result, tension has been increasing between security and development.

But agile development doesn’t have to come at the expense of security. Done right, processes for continuous
development and deployment can still produce reliable and secure software. But developers need more
information, delivered as part of their process, as well as consistent training to do so successfully. We’ve already
seen the rise of “shifting left,” in which security becomes part of the design and development process from the
beginning of the cycle rather than being addressed after the application is complete. “Shifting right” is just as
important, allowing developers to gather data about the application in production and make decisions
accordingly. Just as shifting left pushed security concepts and knowledge to developers, shifting right is about
pushing the developers’ responsibility for the product all the way to production.

In this section, we’ll talk about practices, requirements, and tools for developers to play a meaningful role in
production security.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Focus on bugs that matter

In an agile world, it’s inevitable that some vulnerabilities will reach production. For developers to address the
most critical bugs as quickly as possible, they need visibility into attacks as they occur.
If they can see all of their actual attack traffic and understand what parts of their app attacks to focus on, then
based on that information, they can make decisions about where and how to harden their code. The real attack is

not a list of theoretical vulnerabilities. It’s actual attackers attempting to breach the code developers wrote​.

Enable real-time visibility
In simple terms, developers first need to know two things: How am I currently being attacked? And what vector of
attack is being attempted? They need to proactively review this kind of attack data in real-time. To provide this
information, security events can be pulled into DevOps tools (such as Slack, OpsGenie, VictorOps, and PagerDuty)
they already use to monitor other aspects of their apps. ​When developers understand how their applications are
being misused and attacked, it naturally facilitates the discussion between security and developers about what
parts of the code should be proactively hardened -- e.g., the ones with the highest risk which have most critical
bugs and are highly targeted by attackers.

Track vulnerability metrics
An informed approach to security should also include vulnerability metrics to help developers understand the
urgency of remediating specific bugs, including:

● Mean Time to Attack – Having a list of attacks, the vulnerabilities they exploit, and how frequently they
occur for a specific page can give the development team a sense of how much time they have before a
given flaw will be attacked.

● Mean Time to Remediate – For third-party, open-source components and frameworks, developers should
know how fast the project is updated when a security issue arises so they can decide whether to wait for
a patch or take other mitigation measures first.

Build feedback loops

Technologies like next-generation web application firewalls (WAF) and runtime application self-protection (RASP)
can be used to create feedback loops that help developers and DevOps teams protect applications. It’s important
to make this information available to everyone, not just the security team. By involving developers in security
events as they happen, feedback loops can help move application security from a push model to a pull model—a
more responsive and effective approach.

Set up usage feedback
Divergent usage patterns and anomalous behaviours can be a clear signal of a possible attack. Security and
DevOps teams should get real-time notification of trends, such as unusually high volumes of logins, password
changes, or new accounts being created. Web request traffic that attempts to access resources that don’t exist, or
result in spikes in traffic from uncommon sources, can also be red flags. Instrumenting common flows for users
and tying them to application security feedback can provide further clarity—for example, correlating a spike in
XSS attacks with a high number of password change requests.

Provide easy-to-implement recommendations within DevOps tools

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Integrating security into the DevOps pipeline can lead to more secure code as well as lower development costs.
There are many places in the cycle where information can be presented to the developer and provide feedback to
fuel a virtuous loop. Policy and standards reminders, frameworks, and templates can help enforce secure coding
and design patterns on development. As security checks are performed, developers should be offered proposed
solutions for the problems highlighted, such as being given a secure code pattern in their development
environment whenever they introduce a vulnerability into the code. This can prevent cross-site scripting flaws and
database-injection vulnerabilities. Information from production can be used to inform the advice given to
developers for a self-reinforcing feedback loop that builds best practices while empowering developers to make
the codebase more resilient against attacks.

Deploy proactive web defense

Real-world application security means accepting that some vulnerabilities will reach production. Organizations
should have a robust capability to detect potential attacks and address the underlying vulnerability before they
impact the business, but defense in depth also includes being able to discover vulnerabilities even before they’re
exploited in an attack. There are several ways to do this, each with its own pros and cons.

Vulnerability scanners
Vulnerability scanning is a core element of defense in depth, though not enough in itself to ensure effective
security. Scanning approaches include:

● SAST (static analysis software testing)​ – Code is scanned prior to deployment, with automated feedback
and recommended fixes provided within the development environment.

o Pro: ​ The tester or developer has access to the underlying framework, design, and
implementation of the code, making it simpler to fix.

o Con: ​The test is performed on the code in a non-running state, not the application itself, so results
are limited to coding errors and may not reflect how the code will operate and be attacked in
production. SAST can also be challenging to implement at scale.

● DAST (dynamic analysis software testing)​ –​ ​This is similar to IAST, but performed at scale on multiple
applications. As an application is running, the test tries to penetrate it from the outside in to identify
potential vulnerabilities, including those outside the code and in third-party interfaces.

o Pro:​ DAST provides context about how the application was exploited and how it responded to the
attack. In-line advice speeds remediation.

o Con: ​Since testing is done pre-production, it offers limited or no visibility into how the application
will be attacked by real adversaries.

● IAST (interactive application security testing)​ – Typically used in a QA environment with automated tests
running, IAST works inside the application.

o Pro: ​Reporting vulnerabilities in real time, IAST does not slow down the CI/CD pipeline.
o Con: ​IAST does not test the entire application or codebase, only whatever is exercised or probed

by the functional test. Even if human QA staff devise the test, they can’t foresee every attack
method that could occur in production.

In general, while vulnerability scanning is an important part of testing strategy, its effectiveness is limited. As a
scan of a point-in-time snapshot of the codebase, the test will not reflect any further changes made prior to
deployment. And no scan can predict or provide visibility into how attackers will abuse the application once
deployed to production. They also can’t test the application in the real environment, so vulnerabilities in
application logic or insecure configuration are not detectable.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Application testing, e.g. fuzzing in production
Designed to discover coding errors and security loopholes in software, including operating systems, fuzzing
involves inputting massive amounts of random data (“fuzz”) in an attempt to make the application crash. If a
vulnerability is found, a software tool called a fuzzer can be used to identify potential causes.

● Pro:​ Fuzzing can reveal serious defects in the codebase that are overlooked when originally designed,
written, and debugged. Fuzzers can uncover vulnerabilities that can in turn be exploited by many OWASP
Top 10 injection-style attacks.

● Con: ​To avoid crashing a business-critical application, fuzzing is performed only prior to deployment.
While it can uncover serious code issues that could lead to an exploitation, it will not detect all the
advanced tactics that real-world attackers would leverage in production.

As with the other testing types, fuzzing can be part of an overall defense-in-depth strategy to harden the code
base prior to production, but it can’t provide a complete picture of the overall attack resilience of an application.

Live monitoring
Applications are monitored live in production by the WAF or RASP. A WAF acts as a first line of defense, applying
rules to detect attacks, such DDoS and malicious bot-generated traffic. When an attack is detected, the WAF
immediately blocks traffic to limit its scope while security and DevOps teams begin remediation. A RASP sits
within the application and neutralizes malicious or malformed payloads and specific inputs to protect against both
known and zero-day exploits.

● Pro:​ Implemented in production, live monitoring provides visibility into real-world attacks as they happen.
● Con:​ Many WAFs and RASPs require learning mode and constant signature tuning to rule out false

positives. As a result of overly aggressive false positives, the aggressiveness of blocking rules gets turned
down or completely turned off for fear of breaking the application. Note: not all WAFs and RASPs are
created equal and newer next-gen iterations of these solutions are more flexible and effective at
detection and blocking than legacy WAFs that rely on outdated regular expression pattern matching.

For live monitoring to be effective, false positives must be minimized to allow fully automated operation without
unnecessarily disrupting production applications. One approach is to take a threshold approach that looks at
suspicious payloads over time and with context to determine whether an actual attack is occurring, rather than
simply making decisions on each request in isolation.

Bug bounty programs
As a form of crowdsourced penetration testing, a bug bounty program enables continuous, real-time testing by
incentivizing independent researchers to report issues they discover. To be effective, a bug bounty program
should have clear rules as to where researchers can look for bugs and how they should be reported. Internally,
the organization should set baseline expectations and prepare to record key metrics such as number of bugs, the
severity of each, and times to remediation and triage. The organization should also be prepared for a higher
volume of attack, though actual risk will not increase.

● Pro:​ Bug bounties can validate where the internal security program is and isn’t working, and bring a
broader range of expertise to bear on testing.

● Con:​ Organizations can be concerned about the cost of the rewards offered in the program, though many
researchers are motivated more by recognition than money, making this less of an issue. Other
reservations include the risk of inviting attacks, though in reality, web applications are under frequent
attack anyway—at least a bug bounty program will yield a report on the attack.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Compared with penetration testing, a bug bounty is more likely to yield general or broad feedback. On the other
hand, pentests, while less frequent, can be more directed and highly targeted on specific areas of concern.
Together, the two methods are far more effective than either used in isolation.

Middle Ground
One new trend that could be adopted and appearing is the mitigation of vulnerabilities not fixed. One element to
consider in all the previously mentioned technologies is the mitigation of vulnerabilities that can’t be fixed
immediately. A good tactic and approach are to inject the vulnerabilities from the code scanners or even better
the testing environment as WAF block rules. Now in a pure DevOps way if the WAF is software side the rules can
be easily adapted and tailored to a specific application. Nonetheless, network WAF can achieve the same but with
either a list of rules installed or even better an API interface and the same ruleset pushed centrally to the WAF via
API.

Conclusion

As development cycles accelerate, security can become an afterthought—but this doesn’t have to be the case. By
shifting development right, into production—with full visibility into security events and metrics—organizations
can empower developments to take responsibility for the development and deployment of their applications and
services. Development teams can create more secure code, gain visibility into vulnerabilities and actual attacks on
their software, and use that information to harden their code. Feedback loops and inline advice can help enforce
best practices and company policy across the development cycle. Complemented with proactive web defense,
this makes it possible to ensure security at DevOps speed—for a fully modern approach to application security.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Conclusion
Closing Remarks
The Report is a live one and will continue changing. We would love to hear more from you and your
feedback. Application security is an ever-changing landscape and currently, there is a fundamental battle
between production and non-production, tools and too many tools.
Who will aggregate the two views and bring the humans (developers and management) together with the
journey is going to win the battle?
if you want to hear more or you have any feedback please let us know something at
www.nsc42.co.uk/appreport

Thank You notes
A massive thank you to all the authors, contributors, editors, and reviewers of the document. This
document truly embodies the power of the information security community full of amazing selfless and
inspirational professionals

Contributors
Confirmed Quotes
- [] Tanya Janca

Confirmed authors:

- [] Kim C. - Methodology & Appsec
- [] Vandana V. - IBM - TBD - The art and Science of AppSec
- [] Sasha R. - GitHUB - TBD - Pick a section
- [] Clint G. - Clint Gibler - Static code analysis
- [] Chris S. - Argp Grp - Static Code Analysis
- [] Jim M. - Jim Manico - Overview, Exec, State of appsec & method
- [] Philippe D. R. - SDLC code intro and common issue in code
- [] Emma H. - Report and Exec Summary
- [] Alyssa M. - Dependency check and libraries
- [] Andrew P. - Exec Summary and Prod security
- [] Jo Santiago - SDLC Section with Philippe
- [] Nicole B - TBD
- [] Jason T - TBD

Reviewers
- [] Grant O. - TBD Review

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

http://www.nsc42.co.uk/appreportcomm

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Bios
Francesco Cipollone

Francesco Cipollone

Francesco is an Executive, Public Speaker, out of the box thinker. Francesco is the Executive director of
NSC42 Ltd​ a UK based cybersecurity consultancy. As an executive, he loves to stay close to the
technology but to keep it simple. Francesco is data and result-driven Cyber Security Executive/vCISO
highly regarded for planning and executing strategic infosec improvement programs that protect data and
technical assets, reduce security risks, and align with long-term organisational goals. Francesco held a
number of strategic positions ranging from Head of Application Security to Head of Security
Architecture. Extensive experience with implementing security across multi-cloud providers (Amazon
AWS, Microsoft Azure, Google Cloud). Francesco defines himself as driven to elevate the cybersecurity
world one organization at a time, embracing an innovative approach to application security to protect the
engineering environment. Recognized as a motivational, influential leader who guides high-performing
teams to deliver projects on time and exceeding quality expectations, while instilling a culture of best
practices and collaboration. Builds lasting relationships with board members and C-level executives.
Delivers education and training to members at all levels of an organisation, building awareness for
security initiatives while fostering a common security purpose. Internationally renowned public speaker,
with multiple interviews in high-profile publications (eg. Forbes), and an author of numerous books and
articles, who utilises his platform to evangelise the importance of cloud security and cutting-edge
technologies on a global scale.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.linkedin.com/in/fracipo/
https://www.linkedin.com/in/fracipo/
https://www.nsc42.co.uk/

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Dr. Chris Sellards

Chris Sellards has a Doctor of Science in Cybersecurity from Capitol Technology University. His dissertation was a
quantitative study focused on DevSecOps. He has 24 years of experience in IT, over 20 years in information
security, and 15 years working with application security. He has built AppSec programs in the medical, financial
services, and insurance industries. He has developed the strategy driving AppSec programs aligned with business
security requirements (both for in-house dev teams and outsourced) and has done the hands-on work -
implementing automated SAST into multiple DevOps pipelines and analyzed findings with developers to identify
false positives, tuning queries, setting up incremental scans, and integrating output with tracking tools. He has
worked with software composition analysis using open source and commercial products. He has worked with QA
to implement tools and processes enabling QA to perform automated testing aligned with threat models. He
currently serves as Director of Security Architecture & Engineering at The Argo Group and as an Adjunct Professor
at the University of Texas at San Antonio.

I am passionate about application security; even more passionate about peer-reviewed work adding value to a
market saturated industry. Applications have become a critical component of the world’s infrastructure and
economy. The rapid culture shift driving the expansion of applications becoming critical infrastructure has done
little to address security. The interconnected world provides a pathway for application vulnerabilities to escalate
localized incidents to a global scale. Following Dr. Josiah Dykstra’s claims of the lack of science in cybersecurity,
working on this project provides an opportunity to build axioms into the SDLC.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Tanya Janca

Tanya Janca, also known as ‘SheHacksPurple’, is the founder of We Hack Purple, a tech startup specializing in
security training for IT professionals. Tanya has been coding since she was a teen, has worked in IT for over
twenty years, has won numerous awards, and has done everything from start her own company several times,
been a public servant, and worked for tech giants such as Microsoft, Adobe, and Nokia. She has been a startup
founder, pentester, CISO, CEO, AppSec Engineer, Sys and Network Admin but mostly a software developer. She is
an award-winning public speaker, active blogger & streamer and has delivered hundreds of talks and trainings on
6 continents. She values diversity, inclusion and kindness, which shines through in her countless projects and
achievements.

Founder: We Hack Purple, WoSEC (Women of Security), OWASP DevSlop, OWASP Victoria,
#CyberMentoringMonday

Nicole Becher

Nicole Becher is currently the Director of Information Security & Risk Management for S&P Global
Platts, a leading provider of energy and commodities information and benchmark price assessments in the
physical commodity markets. In this role, she works with both technology and business leadership to
ensure security is built into the strategic plans of the organization, especially as new technology is
deployed.
Nicole is also an Adjunct Instructor at New York University, where she teaches courses on offensive and
defensive computer security, network security, web application security, and computer forensics. She is a
project leader for OWASP DevSlop Project (Open Web Application Security Project).
Nicole has presented both technical talks and training, at various conferences around the world on topics
related to her research interests. Since Nicole has held technical, leadership and policy roles she has a
very unique perspective in the information security space. She was a Cybersecurity fellow of New

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

America, a Washington DC-based think-tank, and was a fellow of the Madison Policy Forum, a
cybersecurity-focused policy group bridging military, government and industry.

Dr. Philippe De Ryck

Philippe De Ryck helps developers protect companies through better web security. His Ph.D. in web
security from KU Leuven lies at the basis of his exceptional knowledge of the security landscape. As the
founder of Pragmatic Web Security, Philippe delivers security training and security advisory services to
companies worldwide. His online course platform allows anyone to learn complex security topics at their
own pace. Philippe is a Google Developer Expert and an Auth0 Ambassador/Expert for his community
contributions on security of web applications and APIs.

Vandana Verma Sehgal

Vandana is a seasoned security professional with experience ranging from application security to infrastructure and
now dealing with Product Security. She has been Keynote speaker / Speaker / Trainer at various public events
ranging from Global OWASP AppSec events to BlackHat events to regional events like BSides events in India.

She is part of the OWASP Global board of directors. She also works in various communities towards diversity
initiatives InfosecGirls, WoSec and null.

She has been recipient of multiple prestigious awards like Global cybersecurity influencer among IFSEC Global's
"Top Influencers in Security and Fire" Category for 2019, Cybersecurity Women of the year award by Women
Cyberjutsu Society in the Category “Secure Coder”. She has also been listed as one of the top women leaders in
this field of technology and cybersecurity in India by Instasafe.

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

Andrew Peterson is the CEO and Co-Founder of Signal Sciences. Under Peterson’s leadership, Signal
Sciences has become the leading provider of next-gen WAF and RASP technology as well as the fastest
growing application security company in the world. As CEO, Peterson is responsible for overseeing all
business functions, go-to-market activities, and attainment of strategic, operational and financial goals.

Prior to founding Signal Sciences, Peterson has been building leading edge, high performing product
and sales teams across five continents for over fifteen years with such companies as Etsy, Google, and
the Clinton Foundation. In 2016, O’Reilly published his book​ ​Cracking Security Misconceptions​ to
encourage non-security professionals to take part in organizational security. He graduated from Stanford
University with a BA in Science, Technology, and Society.

References

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.oreilly.com/learning/cracking-security-misconceptions
https://www.oreilly.com/learning/cracking-security-misconceptions

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

● Information is beautiful - Data Breaches -
https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

● Statista Average cost of all cybersecurity breaches uk 2019 -
https://www.statista.com/statistics/586788/average-cost-of-cyber-security-breaches-for-united-kin
gdom-uk-businesses/

● Uk Cybersecurity Breaches Survey - ​Cyber Security Breaches Survey 2019, page 51
● Verizon 2020 Data Breach Report - ​https://enterprise.verizon.com/resources/reports/dbir/
● Forrester Report - ​https://reprints.forrester.com/#/assets/2/1855/RES159057/reports
● SNYK State of Open source Report - ​https://snyk.io/open-source-security-report/
● Whitesource State of Open source Security -

https://resources.whitesourcesoftware.com/wistia-webinars/the-state-of-open-source-security-vuln
erabilities-in-2020

● Sonatype State of Application Security 2020 - ​https://www.sonatype.com/forrester-state-of-appsec
● Top 2018 appsec breaches -

https://www.immuniweb.com/blog/top-ten-application-security-databreaches-2018.html
● Wors 2019 data breaches -

https://www.zdnet.com/article/these-are-the-worst-hacks-cyberattacks-and-data-breaches-of-2019/
● Top 15 data breaches of the 21st century -

https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html
● WhiteSource - SAST Basic -

https://resources.whitesourcesoftware.com/blog-whitesource/sast-static-application-security-testin
g

● (TBD) - Gitlab State of the Union -
https://amazicworld.com/gitlabs-state-of-the-union-on-devsecops/

● The state of application security testing - ​(Mello, 2020)
● Humble, J., & Farley, D. (2011). Continuous delivery: Reliable software releases through, build,

test, and deployment automation. Boston, MA: Pearson Education, Inc.
● Bell, L., Brunton-Spall, M., & Bird, J. (2017). Agile application security: Enabling security in a

continuous delivery pipeline. Sebastopol, CA: O'Reilly Media, Inc
● Kim, G., Humble, J., Debois, P., & Willis, J. (2016). The devops handbook: How to create

world-class agility, reliability, & security in technology organizations. IT Revolution: Portland,
OR.

● Gregory, J., & Crispin, L. (2009) Agile testing: A practical guide for testers and agile teams.
Pearson Education, Inc: Boston, MA.

● Shahin, M., Babar, M., & Zhu, L. (2017). Continuous integration, delivery, and deployment: A
systematic review on approaches, tools, challenges and practices. IEEE Access, 5(0), 3909-3943.
Retrieved from ​https://ieeexplore.ieee.org/abstract/document/7884954

● Chess, B., & McGraw, G. (2004). Static analysis for security. IEEE security & privacy, 2(6),
76-79.

● Vehent, J. (2018). Securing devops: Security in the cloud. Shelter Islan, NY: Manning
Publicaitons Co.

● Mainstay Partners. (2014). Does application security pay? Measuring the business impact of
software security assurance solutions. Retrieved from
http://h30528.www3.hp.com/Security/Fortify_Mainstay_ROI_Study.pdf

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://www.statista.com/statistics/586788/average-cost-of-cyber-security-breaches-for-united-kingdom-uk-businesses/
https://www.statista.com/statistics/586788/average-cost-of-cyber-security-breaches-for-united-kingdom-uk-businesses/
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/813599/Cyber_Security_Breaches_Survey_2019_-_Main_Report.pdf
https://enterprise.verizon.com/resources/reports/dbir/
https://reprints.forrester.com/#/assets/2/1855/RES159057/reports
https://snyk.io/open-source-security-report/
https://resources.whitesourcesoftware.com/wistia-webinars/the-state-of-open-source-security-vulnerabilities-in-2020
https://resources.whitesourcesoftware.com/wistia-webinars/the-state-of-open-source-security-vulnerabilities-in-2020
https://www.sonatype.com/forrester-state-of-appsec
https://www.immuniweb.com/blog/top-ten-application-security-databreaches-2018.html
https://www.zdnet.com/article/these-are-the-worst-hacks-cyberattacks-and-data-breaches-of-2019/
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html
https://resources.whitesourcesoftware.com/blog-whitesource/sast-static-application-security-testing
https://resources.whitesourcesoftware.com/blog-whitesource/sast-static-application-security-testing
https://amazicworld.com/gitlabs-state-of-the-union-on-devsecops/
https://paperpile.com/c/jOaB3w/TxTP
https://ieeexplore.ieee.org/abstract/document/7884954
http://h30528.www3.hp.com/Security/Fortify_Mainstay_ROI_Study.pdf

NSC​42​ Ltd
Kemp House
152 City Road
London EC1V 2NX
United Kingdom

● Logozzo, Francesco & Fähndrich, Manuel. (2008). On the Relative Completeness of Bytecode
Analysis Versus Source Code Analysis. 197-212. 10.1007/978-3-540-78791-4_14.

● Antunes, N., & Vieira, M. (2009, November). Comparing the effectiveness of penetration testing
and static code analysis on the detection of sql injection vulnerabilities in web services. In 2009
15th IEEE Pacific Rim International Symposium on Dependable Computing (pp. 301-306). IEEE.

● Veracode. (2018). State of software security. State of Software Security, 2018(9).
● Bird, J. (2017). 2017 state of application security: Balancing speed and risk. SANS. Retrieved

from ​https://www.sans.org/reading-room/whitepapers/application/paper/38100
● Hall, E. (2017). 5 ways to improve security in the era of continuous delivery. Gartner IT

Quarterly, 2017 (Second Quarter) 14-17. Retrieved from
https://www.gartner.com/landing/home.html

● 451 Research. (2018). Devsecops realities and opportunities. Retrieved from
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/devsecops-realities-opportuni
ties-451.pdf

● Bird, J. (2015). Devopssec: Delivering secure software through continuous delivery. Sebastopol,
CA: O'Reily Media, Inc.

● Smada, D., Rotună, C., Boncea, R., & Petre, I. (2018). Automated code testing system for bug
prevention in web-based user interfaces. Informatica Economica, 22(3), 23-32. doi:
http://dx.doi.org/10.12948/issn14531305/22.3.2018.03

● Prähofer, H., Angerer, F., Ramler, R., & Grillenberger, F. (2016). Static code analysis of IEC
61131-3 programs: Comprehensive tool support and experiences from large-scale industrial
application. IEEE Transactions on Industrial Informatics, 13(1), 37-47.

● Mendelev, K., Madou, M., & Sum, S. N. M. (2016). "U.S. Patent No. 9,438,617". Washington,
DC: U.S. Patent and Trademark Office.

● Halfond, W., Choudhary, S., & Orso, A. (2011). Improving penetration testing through static and
dynamic analysis. "Software Testing, Verification and Reliability, 21"(3), 195–214.
https://doi.org/10.1002/stvr.450

● Li, Y., Das, P., & Dowe, D. (2014). Two decades of Web application testing—A survey of recent
advances. "Information Systems, 43", 20–54. ​https://doi.org/10.1016/j.is.2014.02.001

● Acunetix ​https://www.acunetix.com/blog/articles/dast-dynamic-application-security-testing/
● Mello, J. P., Jr (2020) ‘The state of application security testing: The shift is on to secure code’.

TechBeacon. Available at:
https://techbeacon.com/security/state-app-sec-testing-get-your-shift-secure-code​ (Accessed: 23
July 2020).

NSC42 Limited is a company registered in Wales and Scotland UK Registration number 9166983 VAT - ​194 8544 61

https://www.sans.org/reading-room/whitepapers/application/paper/38100
https://www.gartner.com/landing/home.html
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/devsecops-realities-opportunities-451.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/devsecops-realities-opportunities-451.pdf
http://dx.doi.org/10.12948/issn14531305/22.3.2018.03
https://doi.org/10.1002/stvr.450
https://doi.org/10.1016/j.is.2014.02.001
https://www.acunetix.com/blog/articles/dast-dynamic-application-security-testing/
http://paperpile.com/b/jOaB3w/TxTP
http://paperpile.com/b/jOaB3w/TxTP
https://techbeacon.com/security/state-app-sec-testing-get-your-shift-secure-code
http://paperpile.com/b/jOaB3w/TxTP
http://paperpile.com/b/jOaB3w/TxTP

